Genome-wide association study of survival in acoustically tagged steelhead smolts in Puget Sound

Kenneth I. Warheit¹, Megan E. Moore², Barry A. Berejikian²
¹WDFW, Olympia WA, ²NMFS NOAA, Port Orchard, WA

2016 Pacific Coast Steelhead Management Meeting

ASILOMAR CONFERENCE GROUNDS PACIFIC GROVE, CALIFORNIA MARCH 9, 2016

Definitions

- Genome-wide association study (GWAS)
 - Correlation between genotype genetic "fingerprint" (e.g., SNPs) and phenotype (e.g., QTLs, fate – survival)
- Steelhead
- Smolt

GWAS between smolt survival while out-migrating through Puget Sound, WA and smolt's genome (reduced-representation of genome)

Phenotype – Smolt Survival

Acoustically tagged steelhead smolt

7mm and 9 mm transmitters @ 69kHz, 136 db

Source	Year	Origin	Release	Mortality	Survival	Total
Skokomish	2006	N	Skokomish	5	6	11
Skokomish	2007	N	Skokomish	5	5	10
Skokomish	2008	N	Skokomish	8	4	12
Skokomish	2009	N	Skokomish	4	3	7
Skokomish	2010	N	Skokomish	7	0	7
Green	2014	U	Nisqually	4	2	6
Green	2014	U	Green	16	7	23
Green	2008	N	Green	7	2	9
Nisqually	2014	U	Nisqually	2	2	4
Nisqually	2014	U	Green	12	3	15
				70	34	104

RAD-seq

- Restriction-site associated DNA (RAD) (sbfl)
- Used to discover 1000s 10,000s SNPs
- Distributed throughout the genome
- 80 bp fragment

Category	# Loci
Initial set of sequences	~650 million
Catalog 1 (m5M2)	109,571
Catalog 2 (m3M4)	137,521
Overlap, filters	5,702

GWAS Methods

- Mixed linear model (MLM) implemented in program TASSEL
- <u>Population structure</u> and <u>kinship</u> included to eliminate false association and reduce Type 1 error
 - Population structure: program STRUCTURE
 - Kinship (relatedness): TASSEL
- Grouping factors as covariates
 - Year, source location, release location
- Genotype: 5702 SNP loci
- Phenotype: Fate (survival v. mortality)

Calculate probability for each SNP H_o: no association

Grouping Factors

- Fate only (no grouping factor)
- Fate + Year
- Fate + Source
- Fate + Release
- Fate + Year + Source
- Fate + Year + Release
- Fate + Year + Source + Release¹

¹No results: design matrix not full column rank

Expected -Log₁₀(p-value) – assuming uniform distribution and no association

Phenotype	Locus						
(MLM)	39529_18	55970_7	12301_21	51226_71			
Fate	1.54E-05	3.49E-04	5.07E-01	9.14E-02			
Fate + Year	2.92E-06	2.16E-03	3.96E-01	1.40E-01			
Fate + Source	1.42E-05	2.80E-04	4.74E-01	1.51E-01			
Fate + Release	1.46E-05	2.63E-04	5.00E-01	1.40E-01			
Fate + Year + Source	3.97E-06	2.53E-03	3.74E-01	1.21E-01			
Fate + Year + Release	4.18E-06	3.62E-158	6.63E-117	9.44E-83			
Blast to N Sequences	2	0	5	14			
Morphogenesis	1	0	0	1			
Immunological	0	0	0	6			
Other	1	0	5	7			

Bold = significant using FDR (Benjamini – Hochberg) at alpha = 0.05 Bonferroni @ alpha 0.05 = 8.8E-6 Bonferroni @ alpha 0.10 = 1.8E-5

Phenotype	Locus						
(MLM)	39529_18			51226_71			
Fate	1.54E-05			9.14E-02			
Fate + Year	2.92E-06			1.40E-01			
Fate + Source	1.42E-05			1.51E-01			
Fate + Release	1.46E-05			1.40E-01			
Fate + Year + Source	3.97E-06			1.21E-01			
Fate + Year + Release	4.18E-06			9.44E-83			
Blast to N Sequences	2			14			
Morphogenesis	1			1			
Immunological	0			6			
Other	1			7			

Bold = significant using FDR (Benjamini – Hochberg) at alpha = 0.05 Bonferroni @ alpha 0.05 = 8.8E-6 Bonferroni @ alpha 0.10 = 1.8E-5

Basin	Fate	CC	СТ	TT	N	G-test P-valu	ue /
Green	Mortality	0.19	0.16	0.65	31	0.019	-
	Survival	0.00	0.80	0.20	10		
							/
Nisqually	Mortality	0.50	0.17	0.33	6	0.017	\checkmark
	Survival	0.00	1.00	0.00	4		
Skokomish	Mortality	0.04	0.30	0.67	27	0.050	
	Survival	0.00	0.56	0.44	18		

Basin	Fate	AA	AG	GG	N	G-test P-value	
Green	Mortality	0.52	0.28	0.21	30	0.028	√
	Survival	0.78	0.22	0.00	9		
Nisqually	Mortality	0.57	0.00	0.43	6	0.028	√
	Survival	1.00	0.00	0.00	2		
Skokomish	Mortality	0.78	0.13	0.09	23	0.048	
	Survival	0.83	0.17	0.00	12		_

0.05 / 3 = 0.0167 0.10 / 3 = 0.0333

Conclusions

- The fate of out-migrating steelhead smolts is not independent of their genomes
- Two groups of genes appear to have significant association with survival
 - Immunological
 - Developmental
- May depends on time (year) and space (release location)
- Working hypothesis (w/ some arm-waving): Smolts with certain alleles may be compromised by their immunological response or fin development
- Predation, for example, maybe the proximate cause of mortality; but ultimate cause may be fish health and presence of pathogen(s)

Limitations

- Sample size (total and per stratum)
 - Power
 - Prevents post hoc tests
- Lack of independence:
 - between year and source location
 - Between source and release locations
- Design: model is for QTLs, but fate is categorical
- Short fragments (limits annotation)

Next Steps (2016 funding)

- Analysis based on 2014 & 2015 samples from Green and Nisqually rivers
- RAD-seq samples not originally sequenced
- Change fate from binary character to quasicontinuous

Next Steps (2016 funding)

- Analysis based on 2014 & 2015 samples from Green and Nisqually rivers
- RAD-seq samples not originally sequenced
- Change fate from binary character to quasicontinuous
- Sample size increases from 59 to 282
- Explore other analysis methods (e.g., Random Forest)
- GWAS with phenotype = # of Nanophyetus cysts

Acknowledgements

- This study is part of the Salish Sea Marine Survival Project. Funding was provided by Washington State
- Puget Sound Steelhead Marine Survival Workgroup for their support in development and implementation.
- Michael Schmidt (LLTK) for intrepid shepherding of the Salish Sea Marine Survival Project (and his herding of cats)
- Amelia Whitcomb (WDFW) for laboratory work and protocol development
- Sewall Young, Todd Seamons, Mo Small (WDFW) for bioinformatics and GWAS discussions
- Michael Schmidt, Todd Kassler (WDFW), Neala Kendall (WDFW) for contract management
- Field crews from NMFS, WDFW, USAC, Muckleshoot and Nisqually Tribes