Egg size and growth in wild broodstock steelhead (*Oncorhynchus mykiss*)

KATE E. SELF, KAREN M. COGLIATI, DAVID L.G. NOAKES, CARL B.SCHRECK

OREGON STATE UNIVERSITY
DEPARTMENT OF FISHERIES AND WILDLIFE

2016 PACIFIC COAST STEELHEAD MANAGEMENT MEETING ASILOMAR, PACIFIC GROVE, CA

Outline

- Surrogate project introduction
- Egg size growth study
 - Methods
 - Results
- Summary of findings

The complex issue of dams

- Dams matter in Oregon
- Impair anadromous fish passage
 - Hatchery fish added to system
 - Decline of wild runs has led to projects like ours

The Wild Fish Surrogate Project

Project Goal:

Develop rearing strategies for wild juvenile surrogates for use in dam passage studies

Detroit Dam, N. Santiam

Cougar Dam, SF McKenzie

Specific project goals

- A) Produce fish for field collaborators
- B) Aim for "Wild Phenotype" target
- C) Investigate methods in hatchery circumstances that result in a fish that resembles a wild phenotype

Study Area

Egg size growth study

- 1. Life history implications for steelhead trout
- 2. Important for surrogate project

12

Why egg size?

Salmonid egg size investigation

Effects of egg size on offspring development and fitness in brown trout, *Salmo trutta* L.

A.F. Ojanguren *, F.G. Reyes-Gavilán, F. Braña

Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, 33071Oviedo, Spain

Accepted 9 July 1996

Bigger is not always better: egg size influences survival throughout incubation in brown trout (*Salmo trutta*)

Thomas Régnier^{1,2}, Valérie Bolliet^{1,2}, Philippe Gaudin^{1,2}, Jacques Labonne^{1,2}
¹INRA-JUMR ECOBIOP, Pôle d'Hydrobiologie INRA, Saint Pée sur Nivelle, France
²UPPA-UMR ECOBIOP, Pôle d'Hydrobiologie INRA, Saint Pée sur Nivelle, France

Accepted for publication October 24, 2012

Effect of Female Size, Egg Size, and Water Temperature on Developmental Biology of Chum Salmon (Oncorhynchus keta) from the Nitinat River, British Columbia

Terry D. Beacham and Clyde B. Murray

Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station, Nanaimo, B.C. V9T 5K6

Effect of maternal growth history on egg number and size in wild white-spotted char (Salvelinus leucomaenis)

Kentaro Morita, Shoichiro Yamamoto, Yoshinobu Takashima, Takashi Matsuishi, Yasuji Kanno, and Kinya Nishimura

Study Questions

1. Does the growth rate of juvenile steelhead trout differ in offspring from eggs of different sizes?

 H_1 : Small-egg origin offspring will grow more quickly than large-egg origin offspring over time.

2. Is the growth rate of juvenile steelhead trout affected by rearing group?

 H_2 : The growth rates of small and large-egg origin fish will differ between small, large, and mixed rearing groups.

Fish spawned April 2014

Minto Fish Collection Facility

Fish spawned April 2014

Transported to OHRC

Methods

- Each female's eggs kept in separate isolet(s) within heath trays
- Incubated until eyed egg stage
- Sorted within female by weight at eyed egg stage

Egg size determination

Study design

- VIE tags and pelvic fin clips
- Monthly sampling
 - Subset (30/tank)

Linear Model 1

Length ~ treatment + date + treatment*date + (1|tank)

Q1. Does the growth rate of juvenile steelhead differ in offspring from eggs of different sizes?

Q2. Is the growth rate of juvenile steelhead trout affected by rearing group?

Linear Model 2

Length ~ treatment + mixed + date

Isolated size group

Day 212

Day 212

Summary

- In all cases, within female variation in egg size was significant
- Fish from the smallest eggs had longer final lengths than fish from the largest eggs
- Fish reared in a mixed treatment grew longer than fish reared in uniform groups

So what?

- Wild Fishes Surrogate Project
 - Implications for rearing
 - Counter-intuitive information for hatchery managers
- Life history
 - May be an indicator for future life history tactic choices
 - Possible reflection of a bet-hedging tactic on the part of the female to increase the diversity of her offspring?

Acknowledgments

Cameron Sharpe

Alix Gitelman

Ryan Couture

Joyce Mahr

Joseph O'Neil

Julia Unrein

Olivia Hakanson

Heather Stewart

Rob Chitwood

Courtney Danley

Bill Brignon

Parr Group

Oregon Cooperative FW

Unit

Statistics

Normal distribution observed

Tested with small and large treatments as reference levels

Figures show log-transformed data

Significant Interaction $F_{1,242.3} = 0.0327$

Pairwise: Small to Large P = 0.006

Large Mixed to Small P = 0.06

Significant Interaction $F_{1,242.3} = 0.0327$

Pairwise: Small to Large P = 0.006

Large Mixed to Small P = 0.06

Objectives of egg size growth study

- 1) Assess morphometric differences between two distinct egg size groups
- 2) Assess short-term and long-term effects on growth and development when the two size groups are reared together versus alone

