Restoration of Anadromy

Recovering Lost Migratory Behavior in Coastal Fishes
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Restoration is being asked to
restore a life-history strategy
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Pathways to Restore Anadromy




3 Pathways to Restore Anadromy
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When to Migrate: Weighing Life History Options
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Controls on Anadromy

Genetic

Genetic variation associated
with differentiation above
and below barriers to
anadromy

— Pearse et al 2009, 2014

Heritability of migration
— Thrower et al 2004
— Phillis et al 2016




Controls on Anadromy

Environment

Anadromy is expressed when
resources become growth-
limiting

Temperature
Food
Density

(Sloat et al 2014, Kendall et al 2015)




Controls on Anadromy

Genetic X Environment

Threshold Reaction

Frequency of Norm

anadromy (Hazel 1990,
Sloat et al 2014)
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Controls on Anadromy
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Re-Colonization

Early colonists experience little density
dependence, potentially extremely high fitness

May also lack key traits such as the timing of life-
history events that match well with the new
environment

Re-colonization will go in concert with re-evolution
of associated locally adapted traits




Re-Colonization

1. In-basin colonists via straying

1. Timescale on the order of years to decade

2.  Probability of strays reaching a given habitat area is a function of
distance to a source population as well as the size of the source
population

2. Stocking from out-of-basin

1. Timescale can be quick (subject to mgmt. decisions)
2. Lacklocal adaptations
3. Largely unsuccessful to date

3. Bet-hedging mothers

1. Timescale on the order of a single generation

2. “Resident populations by themselves should not be relied upon to
maintain long-term viability of an ESU.”
-- (Salmon Recovery Science Review Panel, 2004)
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Re-Expression

Onset of migration is cued by an
organism's environment

Frequency of
anadromy

Environment




Re-Expression

If cues change, migration may be
delayed or abandoned

Frequency of
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Re-Expression

Restoring the environment will lead to
re-expression of anadromy
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Re-Expression

Restoring the environment will lead to
re-expression of anadromy

Frequency of
anadromy

DENSITY




Re-Expression

Re-expression requires a diverse
portfolio of habitats and populations

Frequency of
anadromy

TEMPERATURE * FOOD * DENSITY




to Restore Anadromy




Re-Evolution

Evolutionary loss of anadromy can occur on
timescales that are relevant to managers

Re-evolution of anadromy from the resident
form is possible, but the window of
opportunity may be closing
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Study System: A natural experiment
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In early 1900’s O. mykiss below falls were

introduced above a barrier waterfall



Controlled Breeding Experiment

Above Fall? Above Falld Below FallQ Below Falld
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Analyses presented are ‘Animal Models’implemented in the R package MCMCgImm




Above Barrier Smolt Less & Are
Larger When They Smolt

above below 80 100 120 140 160 180 200 220
Cross fork length (mm)

Phillis et al 2016 Journal of Heredity




Dams Create Landlocked Populations

& Keystone dam

“1st Barrier to
Anadromy”




Novel Selection Against Anadromy

When to Migrate: Weighing Life History Options

Factors
leading to

Residence
Factors

leading to
Anadromy




The Fate Of Anadromy




Evolution of Anadromy:
An Individual Based Model Approach
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Evolution of Anadromy:
An Individual Based Model Approach

i, fecundity Spawning
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Simulating Anadromy in O. mykiss
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Simulating the O. mykiss Lite-Cycle
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Assigning Heritable Threshold Traits
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Simulating The Growth-Dependent
Migration Decision
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Evolution Rescues Populations From
Extinction




Can Evolution Rescue A Population?

- extinct
—  extant

% populations
remaining

% Anadromy

100
Generation

Scenario: Construction & removal of an
impassable dam

Phase: Pre-dam construction
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Can Evolution Rescue A Population?

- extinct
—  extant

% populations
remaining

% Anadromy

100
Generation

Scenario: Construction & removal of an
impassable dam

Phase: Post-dam construction




Most Populations Survived, But Anadromy Did Not

- extinct
—  extant
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100
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Scenario: Construction & removal of an
impassable dam
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What About Evolution in the Other Direction?




Anadromy Re-evolves, Unpredictably

— extinct
— extant
— 7 populations remaining
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No.
of Dams

Age Of Dams in United States

Dam removals in the United States
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Re-evolution is Less Predictable the Longer the Dam is in
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Average Threshold Smaller Than Average Body Size

— extinct
— extant
— 7 populations remaining
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Rapid Evolution of Larger Threshold Sizes
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— extant
— 7 populations remaining
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Large Thresholds Prevent Expression of Anadromy

— extinct
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— 7 populations remaining
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Re-Evolution

oss and recovery of anad
roceed at different rates




3 Pathways to Restore Anadromy




Restoration as Large-Scale Experiments
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Restoration as Large-Scale Experiments




Restoration as Large-Scale Experiments




Migratory Behavior of Pacific Salmon & Trout
(Oncorhynchus spp.)

Pink (Oncorhynchus gorbucha)

Chum (Oncorhynchus keta)

- | Chinook (Oncorhynchus tshawytscha)
~a{ Coho (Oncorhynchus kisutch)
=4 Sockeye & kokanee (Oncorhynchus nerka)

- ’: Steelhead & rainbow trout (Oncorhynchus mykiss)

FIXEd { Cutthroat trout (Oncorhynchus clarki subsp.)

RQSld en Cy Sl Rainbow trout (Oncorhynchus mykiss subsp.)




